
CONTENTS

Setting up and adding a
fault message

Updating copy rules

Enabling a Catch All fault
handler

Adding a Catch All fault
handler

Returning a fault message

Checking your work

Validating input

Throwing a user-defined
fault

Catching a user-defined
fault

Returning an incorrect
length fault message

Checking your work

Hiding fault handling: the
orange X

Finding a service-defined
fault

Catching a service-defined
fault

Deploying and testing

Reference image of the
completed project

This tutorial assumes that you have completed the previous
tutorials and builds upon them.

Fault handling is an important part of a robust produc-
tion process. Processes do not always perform as expected.
Sometimes an issue can be anticipated. For example, users will
sometimes input invalid data. Sometimes an issue is completely
unexpected. Fault handling helps address these concerns.
Depending on the issue, the process may be able to recover or
it may need to display (and possibly log) information and exit.

This tutorial introduces fault handling in Process Design Studio.

You will start this tutorial by opening the project you completed
in Tutorial 6.

You will add a Catch All to detect and respond to any issue. You
will then add a Catch for a user-defined fault, which will detect
invalid account formats. Finally, you will add a Catch for a
service-defined fault, which detects invalid account numbers.

Prerequisites:

•	Micro Focus Verastream Process Design Studio

•	An installed and running Micro Focus Verastream Process
Server

•	Internet browser

•	Experience using the XPath and Copy Rule Editors from
previous tutorials

•	Some familiarity with XML Schema, WSDL, XPath, BPEL,
and Web service standards

•	A completed project file from Tutorial 6.

Let’s get started.

Tutorial 7: Fault Handling

2 3

Updating copy rules

By default, project files are
stored in:

My Documents\Micro
Focus\Verastream\
ProcessDesigner\
workspace

To open the Project
Explorer, from the
Windows menu choose
Project Explorer.

For this tutorial, you'll use the project file from the previous
tutorial (with a different name) and add a string to the Output
message for a fault message. To add the string, you make the
Output variable a complex type, so it can hold both credit check
and fault messages.

1.	 Open the completed project from Tutorial 6. (Choose File
> Open Project...)

2.	 Create a copy of the project. Choose File > Save As.
Name the new project FaultHandling. Click OK.

3.	 To open the WSDL Editor, from the Project Explorer,
double-click FaultHandling.wsdl.

4.	 To open the Schema Editor, double-click the arrow to the
right of Response.

5.	 Select Output and in the Properties view, on the General

tab, name the output CreditLimitResponse.

6.	 Right-click ResponseType and choose Add Element, to
create another new element.

7.	 Select the other new element, and in the General tab
and change its name to FaultResponse. You should now
have two elements named CreditLimitResponse and
FaultResponse.

8.	 Close the Schema Editor and the WSDL Editor, and save
the project.

Setting up and adding a fault message

Now you must update the copy rules.

1.	 Select AssignLimitNotExceeded and in the Details tab,
double-click to open the copy rule that includes the literal
“Below the credit limit...”

2.	 On the To side, expand response:OutputMessage, and
payload:Response. Select CreditLimitResponse:string,
then click OK.

3.	 In the BPEL Editor, select AssignLimitExceeded. In the
Properties view, open the Details tab and double-click the
single copy rule to open it.

4.	 On the To side, expand response:OutputMessage, and
payload:Response. Select CreditLimitResponse:string,
then click OK.

5.	 Save the project.

4 5

A Catch All catches any
fault that isn't inter-

cepted by a prior Catch
statement.

It is best to use a Catch for
specific errors whenever
possible, so that you can
return information about

the kind of fault that
occured. This tutorial will
provide a few examples
of doing that. However,

you cannot anticipate
every possible fault. For

example, you might check
the input in various ways,
but not consider the pos-

sibility that an invoked
service is not available.

A Catch All is the backup
plan--it can tell you that

something happened, but
it cannot tell you what

happened.

It is time to add the Catch All fault handler. You will first add a
Catch handler (which you will return to a bit further along in the
tutorial), then add a Catch All, then remove the Catch.

1.	 In the BPEL Editor, right-click the green circle that starts
your process diagram and select Add Fault Handler.

2.	 Right-click the box around the fault handler and select Add
Catch All.

3.	 Delete the original Catch activity and the Sequence
beneath it.

4.	 Save the project.

Adding a Catch All fault handler

Some web services include service faults and some do not.
Service faults are declared in the WSDL file (the file that con-
tains the XML code that defines a web service). For services
without them, or that do not have one declared for general
problems, you can use a Catch All fault handler. You must first
enable the Catch All by adding a snippet of XML code to the
WSDL. Before using any XML in a production environment, you
should thoroughly test it to ensure it meets your expectations
and does not introduce unexpected consequences.

1.	 From the Service Explorer, right-click the top item,
FaultHandling, and choose Open BPEL in XML Editor.

2.	 At the bottom of the XML Editor, click the Source tab.

3.	 In the XML Editor, locate the first line that starts with
<bpel:import Click at the beginning of that line and
press the Enter key.

4.	 Type or copy and paste this XML into the space you
created (it must be entered exactly as it appears below).

5.	 Close the XML Editor and save the project.

Enabling a Catch All fault handler

The XML Editor has a design
view and a source view.
Use the tabs at the bottom
of the editor’s window to
switch between them. You
should add this code in the
source view.

IMPORTANT: If you copy
and paste the XML, you may
have to copy and paste it
into a plain text editor (such
as Notepad) first, then copy
and paste from the text
editor into the XML Editor.
Doing this ‘cleans’ the
text of any unwanted (and
potentially troublesome)
formatting information that
can be passed through a
clipboard.

<ext:failureHandling xmlns:ext="http://ode.apache.org/activityRecovery"> 	
 <ext:faultOnFailure>true</ext:faultOnFailure>
</ext:failureHandling>

6 7

Scope is an important
BPEL activity that provides
context for other activi-
ties, such as variables,
faults and events. A scope
creates an opportunity
to handle these kinds of
activities without impact-
ing activities outside it. An
analogy in some program-
ming languages would be
curly braces, {}. For more
information on scope, see
the Process Design Studio
Help.

The Reply activity allows
the Catch All handler to
respond with the Output
message you copied text
into.

If you are creating a fault
handler that is NOT at the
process level, you must
add an Exit activity after
each Reply activity within
the fault handler.

This is a good time to check your work by deploying the service
and entering an invalid account number. If the Catch All works
as expected, instead of seeing no result, you should see the
message you just created, “A fault has been caught.”

1.	 From the File menu, select Deploy to Process Server...

2.	 Enter the name, username and password for the server.
The defaults are:

name: localhost username: admin password: secret

3.	 In the Deployment Succeeded dialog box, click Test
Service to launch the Web Services Explorer.

4.	 You will see a single Input field. Enter a valid account
number, for example, 20004, and click Go.

5.	 If you entered 20004, you should see the message:

“These purchases would exceed the account credit
limit.”

6.	 Now try an invalid account number, such as BBB. You
should see the message:

“An unidentified fault has been caught.”

Checking your work

You need to add a fault message to the Catch All handler to
inform the user when a fault occurs. The fault message will be
passed to the FaultMessage element you created in the Output
variable.

1.	 In Catch All, delete the Compensate and Rethrow activities.

2.	 Add an Assign activity to the sequence of the Catch All.
Name it AssignCatchAllFault.

3.	 Click AssignCatchAllFault. In the Properties view, open
the Details tab and click Add copy rule... .

4.	 In the From drop down, select Fixed Value. In the text
field that appears, type (include the quotes):

“An unidentified fault has been caught.”

5.	 On the To side, expand response:OutputMessage, then
payload:Response, and select FaultResponse:string.
Click OK.

6.	 Inside the Catch All sequence, after AssignCatchAllFault,
insert a Reply activity. Name it ReplyCatchAll.

7.	 Select ReplyCatchAll, and in the Properties view select
the Details tab.

8.	 In the Quick Pick pane, expand process and select
OutputMessage.

9.	 Unless you are planning on further processing, insert
an Exit activity after the ReplyCatchAll and name it
ExitCatchAll.

10.	Save the project.

Returning a fault message

8 9

If the input is the wrong number of characters, activities inside
the If activity will be called. You will place a Throw activity inside
the If. A Throw activity throws a fault, which you will name. You
will then create a Catch activity to receive the fault.

1.	 From the Palette, under Faults, place a Throw activity
inside the If activity you just added.

2.	 Select Throw, and in the Properties view, open the Details
tab and select User-Defined Fault.

3.	 Name the fault FaultIncorrectLength.

4.	 Save the project.

Throwing a user-defined fault

Some types of input
errors, such as format
errors, can be identified
immediately. It is often
more efficient to identify
them right away than to
rely on an invoked process
to do so.

The most common fault in a process that accepts user input is
often the result of invalid input. Since you know invalid input is
a potential issue, you will create a Catch statement to provide
a level of input validation. If the input is invalid, you can inform
the user not only that there has been a fault, but what the fault
was (invalid input). For this tutorial, you know that valid account
numbers are five characters long. You will add an If activity that
tests the input to determine whether it is the right length.

1.	 In the BPEL Editor, add an If activity between
ReceiveInput and AssignInput.

2.	 In the Properties view of the If activity, open the Details
tab and click the pencil to open the XPath Expression

Editor. Delete the default expression, true().

3.	 In the Functions tree, expand String, then double-click
string-length. This inserts string-length(string) in
the Expression field with String highlighted.

4.	 In the Variables tree, expand request:InputMessage and
payload:Request, and then double-click Input:string
to replace String with $request.payload/tns:Input.
Click at the end of the expression.

5.	 In the Operators tree, expand Relational and double-click
!= (not equal).

6.	 Type a space, and then the number 5. Click OK.

Validating input

10 11

The steps to return an output message describing the user-
defined fault are similar to those for a Catch All message.

1.	 Add an Assign under FaultIncorrectLength. Name it
AssignIncorrectLengthFault.

2.	 Click AssignIncorrectLengthFault. In Properties view,
open the Details tab and click Add copy rule... ().

3.	 In the From dropdown, select Fixed Value. In the text
field that appears, type (include the quotes):

“The account number entered is not five characters
long.”

4.	 On the To side, expand response:OutputMessage, then
payload:Response, and select FaultResponse:string.
Click OK.

5.	 Inside the FaultIncorrectLength sequence, after
AssignIncorrectLengthFault, insert a Reply activity. Name
it ReplyIncorrectLength.

6.	 Select ReplyIncorrectLength, and in the Properties view
select the Details tab.

7.	 In the Quick Pick pane, expand process and select
OutputMessage.

8.	 Insert an Exit activity following the Reply. Name it
ExitIncorrectLength.

9.	 Save the project.

Returning an incorrect length fault message

Notice that when you
select a Fault Name, the
name of the Catch activity
changes in the BPEL Editor
from Catch to the name
you have selected, in this
case, FaultIncorrectLength.

Catching a user-defined fault

1.	 Right-click the box around Catch All; select Add Catch.

2.	 Delete the new Compensate and Rethrow activities.

3.	 Select Catch, and in the Properties view, open the Details
tab and select User-Defined Fault.

4.	 For Fault Name, select FaultIncorrectLength.

5.	 Save the project.

12 13

Feel free to try more
account numbers before
moving on.

It’s time to check your work again. This process now has four
potential messages, two for a valid account number (‘credit limit
exceeded’ and ‘purchase ok’), and two for faults (‘...not five
characters...’ and ‘a fault has been caught’).

1.	 From the File menu, select Deploy to Process Server...

2.	 Enter the name, username and password for the server.
The defaults are:

name: localhost username: admin password: secret

3.	 In the Deployment Succeeded dialog box, click Test
Service to launch the Web Services Explorer.

4.	 Try the following account numbers to see all four potential
messages:

20000
20004
BBB
20005

Checking your work

When you create a Catch or Catch All, the green circle at the top
of the process flow diagram changes to show an orange X .

A similar X also appears on the right side of the flow diagrams
of faults. Clicking the Xs in the green circle toggles the display
to either show or hide the Catch and Catch All flows. In this
graphic, the Catch and Catch All that you created are visible:

In this graphic, they are hidden. Toggle between the two views
by clicking the orange X.

Hiding fault handling: the orange X

14 15

Finding a service-defined fault

Services you import may also output faults. The WSDL Editor
shows the interface to a service. If a service outputs a fault, it is
shown in the WSDL Editor.

In the Service Explorer, right-click CICSAcctsDemo and select
Open WSDL.

You can see the fault in the WSDL Editor:

Of course, now that you know the fault is there, you will want
to use it. Hopefully, you can get information about the kinds of
faults that are thrown by the services you import. In this case,
the CICSAcctsDemo service throws a fault when an invalid
account number is input. You can catch any fault in the WSDL
and decide how to handle it. Here, you will just pass it to the
Ouput message.

You will start by adding another Catch activity and set it up
to catch the fault you are interested in. You will then copy the
message your receive to the Output message and finish with a
Reply activity.

1.	 Right-click the box around your processes' fault handers
and select Add Catch.

2.	 Select the Catch statement, and in the Properties view,
in the Details tab, select Service Fault. Faults that are
available in the current scope are listed under Fault name.
Select CICSAcctsDemoException.

3.	 In the Catch activity CICSAcctsDemoException, delete the
Compensate and Rethrow activities.

4.	 Add an Assign activity to CICSAcctsDemoException after
Sequence. Name it AssignCICSException.

5.	 Click AssignCICSException. In the Properties view, open
the Details tab and click Add copy rule... ().

6.	 On the From side, expand

CICSAcctsDemoException:CICSAcctsDemoException
then fault:CICSAcctsDemoException, and select
message:string.

7.	 On the To side, expand response:OutputMessage, then
payload:Response, and select FaultResponse:string.
Click OK.

8.	 After AssignCICSException, insert a Reply activity. Name it
ReplyCICSException.

9.	 Select ReplyCICSException, and in the Properties view
open the Details tab. In the Quick Pick pane, expand
process and select OutputMessage.

10.	Insert an Exit activity after the Reply. Name it
ExitCICSException and save the project

The order of Catch activi-
ties is often important.

Drag Catch activites hori-
zontally to reorder them.

Catch All should always be
last.

In step 6, the error
message you are assign-
ing to the output variable
is provided by the WSDL.

It is part of the fault
definition in the WSDL.

Catching a service-defined fault

16 17

Reference image of the completed processDeploying and testing

You have completed the fault handling project. The process now
has five potential messages, two for a valid account number
(‘credit limit exceeded’ and ‘purchase ok’), two for faults you
defined (‘...not five characters...’ and ‘a fault has been caught’),
and one that should show if the account number is five charac-
ters long but invalid.

1.	 From the File menu, select Deploy to Process Server.

2.	 Enter the name, username and password for the server.
The defaults are:

name: localhost username: admin password: secret

3.	 In the Deployment Succeeded dialog box, click Test
Service to launch the Web Services Explorer.

4.	 Select SOAP11BINDING in the left panel of the Web
Services Explorer.

5.	 Try the following account numbers to see four of the
potential messages:

20000
20004
BBB
20005

Can you think of a way to make the process return the fifth
message -- the Catch All's 'undefined fault' message?

Valid account numbers
are:

20000 through 20004

and

20006 through 20008

