VS

Process
Designer

Tutorial 6: Combining Multiple Services

CONTENTS

Setting up and importing
services

Invoking imported services

Passing input to the
imported services

Creating a variable to store
the sum

Storing the sum of
purchases

Using If and Else activities
to determine the Output
message

Changing the Output
message

Deploying and testing

Using debug mode to
check values

Reference image of the
completed process

This tutorial assumes that you have completed the previous
tutorials and builds upon them.

This tutorial provides an example of combining results from
more than one service to reach a conclusion. It takes an
account number as input, then uses that number to get data
from two different services. From one, it retrieves an account
balance and charge limit; from another, it retrieves the prices
of a number of potential purchases. The process finds the sum
of all potential purchases, combines it with the account balance
and tests whether the charge limit would be exceeded if the
purchases are made.

The tutorial ends with a brief introduction to using debug mode
to inspect the values of variables while a process is running.

Prerequisites:
e Micro Focus Verastream Process Design Studio

¢ An installed and running Micro Focus Verastream Process
Server

e Internet browser

e Experience using the XPath and Copy Rule Editors from
previous tutorials

e Some familiarity with XML Schema, WSDL, XPath, BPEL, and
Web service standards

Let’s get started.

Setting up and importing services

You can import a service
at any time by selecting
File > Import Service. You
will see the Import Service
dialog, shown in step 6 of
this lesson.

The process you are creat-
ing will receive an account
number input as a string.
The output message will
also be stored in a string.
The default types for
Input and Output are both
string, so you do not have
to change them.

1. Start by selecting File > New Project....

2. Name the new project MultipleServices and click Next.

3. On the Import Services dialog, click Add.

4. On Import Service, click Import a service from the
Internet, then copy this location into the URL field:
http://localhost:9999/PurchasesDemoService?wsdl
Click Next.

5. In the Name field, PurchasesDemoService has been
added. You can change this hame to anything you want,
but in this tutorial we will use PurchasesDemoService.
Click Finish.

6. To add the second service, click Add.

7. On Import Service, click Import a service from the
Internet, then copy this location into the URL field:
http://localhost:9999/CICSAcctsDemoService?wsdl
Click Next.

8. The service is named CICSAcctsDemo. Click Finish.

9. On the Import Services dialog, click OK.

10.In the BPEL Editor, delete the DoSomethingHere activ-
ity (and the AssignValue it contains) from your default
project. Save your project.

]
Import Servicas .

You cam enpod seeomd ed Tor wid w o peapect. Thig shep o ophonal. Fou can

it sdddibronal fero ch walh bhe Impodt Servdes watand

Lervst e Marme WhIL Add

4 *

?

Invoking imported services

Invoking a service is the process of executing a web service
operation. Typically, this involves passing it input and accepting
output from it. Each input variable that belongs to an imported
service is automatically initialized by the Process Design Studio,
but you must pass a value to it before you can use it in an
Invoke activity.

1. Open the Service Explorer tab, expand
PurchasesDemoService, and drag
GetPurchasesByAcctNum into the BPEL Editor. Place it
between Receivelnput and ReplyWithOutput.

2. Expand CICSAcctsDemo and drag GetAccountDetail
into the BPEL Editor. Place it between
GetPurchasesByAcctNum and ReplyWithOutput.

For variables to be initial-
ized automatically in the
Process Design Studio, the
setting Initialize Variables
Automatically, acces-
sible from the Preferences
menu, BPEL Properties
panel, must be selected.
This option is selected by
default.

When you place
GetPurchasesByAcctNum
and GetAccountDetail in
the BPEL Editor, Invoke
activities are automatically
created for them.

Passing input to the imported services

Frgeic

Wanakde

CICSAcotiDevnad Smnnice_Detdi s sumt Dt ail_lngu
CICSAreisDematendce GetdoooumtiDetail Outy

Fuaic hadeiDierg Serand 8Ost P ke By fd ot

At this point, your process only gets an account humber as
input. You need to add an Assign activity to copy the account
number to the input variables of your imported services.

In these steps, you will create Invoke activities for the variables,
insert an Assign activity before the Invokes, and then use that
Assign to pass values to the service input variables.

You are doing these tasks in this order because the Invoke
activities must be in the process before you can access their
input variables.You need to copy the account number to the
input variables of your imported services.

1. Insert an Assign activity between Receivelnput and
Invoke_PurchasesDemoService_getPurchasesByAcctNum.
Select Assign in the palette and then click between those
activites.

2. In the Properties view, open the Description tab and
change the name from Assign to AssignInputs.

3. In the Properties view, open the Details tab, click the Add
copy rule... icon (g).

4. On the From side, expand request:InputMessage, and
select Input:String.

5. On the To side, expand CICSAcctsDemo
GetAccountDetail Input:GetAccountDetail,
then parameters:GetAccountDetail,
and select AcctNum:string.

Ta

- Warisile -

| patameters : DelfcgounlDclol = (el ount Delal
=] AoctMum; string

@ ClICSAccteDemoSersice_GethcoountDetail_mput ; Getiooc

PurchaserDemoserace_GetiunmesesBynocti
iegpueil - Fputbleiinge

1 payload @ Reguest

8] Ingu : gbrireg

resporse @ Jutputiessage

CICSAc ctillermoberms e GetdcoountlDelal Chalpal - (sellAe
PurchasesDemcbervice GetPurchasesByAcciMum_inpaut : ¢
Purchascilemoternace_GatPurchaseiByAcotMurm Cutps
requeest : Inputhlessage

edpenis : Gutputbdeisage

6. Click the Add copy rule... icon (5z) again.

7. On the From side, expand request:InputMessage, and

select Input:string.

8. On the To side, expand PurchasesDemo
GetPurchasesByAcctNum Input:GetPurchasesByAcctNum,
then parameters:GetPurchasesByAcctNum,
and select AcctNum:string. Click OK.

9. Save the project.

Creating a variable to store the sum

The GetPurchasesByAcctNum service returns several pieces of
information about potential purchases. For this tutorial, you will
only be concerned with the price. The next step is to find the
sum of the prices of all potential purchases. You will store the
sum in a temporary variable named varSum.

1. In the Outline view, right-click Variables and select Add
Variable.

EF Duthne 3
B ~
= e maklaas

Umnilo Lonfigure [meoke

1 ® Add Variable ket

i T Shewin Properise fa

: e Show Pabatte in Palette View L
B T

2. Name the variable varSum, then click OK.

3. In Name field of the Type Selector dialog, type int to filter
available types, then double-click integer.

4. Save the project.

Storing the sum of purchases

The sum function returns the sum of all of the nodes in a node
set. You will use it now to find the sum of all of the Price nodes
in the list of purchases.

1. Insert an Assign activity between Invoke_
CICSAcctsDemo_GetAccountDetail and ReplyWithOutput.
Name it AssignSum.

2. Select AssignSum. In the Properties view, open the
Details tab and click the Add copy rule... icon (g).

3. In the From menu, select Expression, then click XPath
Expression Editor...

4. In the Functions tree, expand Node and double-click sum.
sum (anyAtomic sequence) is added to the Expression field.

5. With anyAtomic sequence selected, in the Variables tree,
expand PurchasesDemoService GetPurchasesByAcctNum
Output,
then Parameters:GetPurchasesByAcctNumResponse,
then return:PurchasesByAcctNumRecord,
then double-click Price:string.

6. In the expression that replaces anyAtomic sequence,
delete the [1], so the whole expression looks like this:

sum (SPurchasesDemoService GetPurchasesByAcctNum
Output.parameters/return/Price)

Click OK.
E Khges Eaprepban Eamas | &
WandEled Funchiong e alests
B OISR Rl Creliial il eliel_Dialpri = ripl{Feinie = Lalvryrehn,
Purchsue Do Senace, Getifeechanm By rubreguend e fem_iegeen g, ar Lmepecnl
¥ PurdhasesDemo Sofide Dttt Radd 8 ad subkequens & e Jegaenic AIr Feigtira
paramater - LetFurchaseshyaectfomd '...rn-J.'\..F..".'h'n.-rl,.erl-.r@.:'\.-rr_. Fash
& erturn - e ham Byl byl er m vurmn{sevpliboeri: Type_uspasnoe, |
| Prgshui i sinng {raCE e SEqUETE, MESEIQE]
#| Emount © sinng unordered! dem_tEgetnie
L8| Preds [slreng BETr O~ DT _ equeiie
TR T = | TH—— -
W [] [
Expryuscrs
sum{$PwrchasesDesoterylce_GevPurchasesByicctium_Ostpet . parsseters/return, Price)
=
i poeniiBunchacesDemotenice GerRuechaerBydooriiom Cunmn B IR ey BTio
? [+ 4 Carced

7. On the To side, select varsum:integer, and click OK and
save the project.

Using If and Else activities to determine the Output message

You have calculated and stored the sum of the cost of all the
potential purchases. You can now create an If activity that tests
whether the sum plus the current account balance will exceed
the account charge limit.

1. Insert an If activity between AssignSum and
ReplyWithOutput.

2. In the Properties view, open the Details tab and click the
pencil (I;?"') to open the XPath Expression Editor.

3. Delete the default expression, true ().
4. In the Variables tree, double-click varSum:integer.

5. In the Operators tree, expand Arithmetic and double-
click + (addition).

6. In the Variables tree, expand CICSAcctsDemo
GetAcctDetail Output:GetAccountDetailResponse
then parameters:GetAccountDetailResponse
then return:AccountDetailRecord
then double-click AcctBalance:string.

7. In the Operators tree, expand Relational and double-click
> (greater than).

8. In the Variables tree, expand CICSAcctsDemo
GetAcctDetail Output:GetAccountDetailResponse
then parameters:GetAccountDetailResponse
then return:AccountDetailRecord
then double-click ChargeLimit:string. Click OK.

E xir frfaianic

SwarSum |
SCICSAcotelems GetAccountPetail Output

pavamstare freaturnSisctlalanss
BCIdCRAcelabermg GeliocouniDetail et pual
parameters fEecuEn/Chacgel imlT

9. Save the project.

Changing the Output message

The last step before
deploying and testing
is to add Assigns that
will change the Output
message depending on
the credit status of the
account.

Place an Assign activity inside the If activity. Name it
AssignLimitExceeded.

» proded

& | Recgreddnpul
Aggegrilnpul
¥ ookt PorghedeiDersbernce Gellure haseatiyRociNum
¥ lreobe CICSActsDemoterne Gebhocounileinl
Aggegrirum
L 3
| Else

.
AsugnlumEoeeded dAiagnlsretottn peded
L] L]

Click AssignLimitExceeded. In the Properties view, open
the Details tab and click the Add copy rule... icon (=z).

In the From menu, select Fixed Value. In the text field
that appears, type (including the quotes):

“These purchases would exceed the account credit
limit.”

On the To side, expand response:OutputMessage, then
expand payload:Response and select output:string.
Click OK.

Add an Else activity to the If activity. Right-click on the If
and select the Else.

Place an Assign activity inside the Else activity. Name it
AssignLimitNotExceeded.

Click AssignLimitNotExceeded and add a copy rule. 5=
In the From menu, select Fixed Value. In the text field
that appears, type (including the quotes):

“Below the credit limit. The purchase is OK!”

On the To side, expand response:OutputMessage and
payload:Response, and select payload:Response. Click

OK. Save the project.

Deploying and testing

It's time to deploy and test your new process. This process
requires account numbers. For this tutorial, valid account

numbers are 20000, 20001, 20002, 20003, 20004, 20006,
20007 and 20008. Try to input 20000. The result should be

a message warning you that the purchases would exceed the
account’s credit limit. Try 20003 -- the result should be a
message saying the purchase is ok.

1.

2.

From the Actions menu, select Deploy to Process Server.

Enter the name, username and password for the server.
The defaults are:

name: localhost username: admin password: secret

3. In the Deployment Succeeded dialog box, click Test
Service... to launch the Web Services Explorer.

4. Select SOAP11BINDING from the left panel of the Web
Services Explorer.

5. You will see a single Input field. Enter an account number,

for example, 20000, and click Go.

If you entered 20000, you should see the message:
“Below the credit limit. The purchase is OK!"”
Try other values, such as 20004.

20005 is not a valid
account number, a fact
that will be helpful in
Tutorial 7.

See what happens if
you try invalid account
numbers, such as 1 or
BBB. In the next tuto-

rial, you will create fault
handlers that respond to
invalid input.

10

Using debug mode to check values

A breakpoint on an activity
is indicated in the BPEL
Editor by a blue circle, like
this:

e $I

To remove a breakpoint,
right-click the activity and
select Remove Breakpoint.

You have tested the process and found that both the ‘pur-

chase ok’ and the ‘credit limit exceeded’ message may appear,
depending on the account number input. You do not know,
however, if they are appearing when they should. Perhaps the
process is making an error and showing the wrong message. To
determine whether that is happening, you must know the values
of the sum of purchases, the account balance and the credit
limit. One way to see those values is to use the Process Design
Studio’s debug mode.

The debug mode allows you to follow the progress of your
process and inspect the values of variables as activities execute.
This can be very helpful for finding the source of problems in
your processes.

In debug mode, the process executes until it hits a breakpoint.
A breakpoint is a marker you can add to most activities in your
process. When debug mode encounters a breakpoint, execution
of the process stops and you have an opportunity to examine
the current state of the elements that compose your process.
You can also step through your process after a breakpoint --
executing only one item at a time so you can see how things
change.

1. In the BPEL Editor, right-click the If activity and select
Add Breakpoint.

2. Deploy the process again, but this time, deploy in debug
mode by clicking the debug button near the top of the
process designer.

File Edit Mavigate Debuyg Window Help

o D A G
= = -ﬂ-ﬁ. Gh, o 9

3. If prompted, enter the name, username and password for
the server. The defaults are:

name: localhost username: admin password: secret

4. Input 20000 and click Go. You will see the Debug view of
the Process Design Studio. (If you do not, then switch to
the Process Design Studio, and from the Window menu,
open the Debug view.)

The breakpoint is on the If activity, so the debug view can
currently show the value of variables before the If activity.

M

& & & & & b B

10.

Properties | 120 Problems | & Bebug &5 (he

armne

Nt

CICSAcctsDema_GetAccountDetail_Input
:-".l"-:'"n.i*i:'--':'--:‘l‘::'-"-.-:'-:-.-'.--.'-_{:n-'.:-".l'-:"u.:'-:'--"...'"-.-:'-:'r"'.'.l"l" It
cutput
PFurchasesllemaService_etPurchasesByacctMum_Output
VAT IUITY
CICsAcctsDemo_GetAccountDetan _Outoul

Double-click on varSum. Its value should be 957.5.

Double-click on CICSAcctsDemo_GetAccountDetail_
Output. Find ChargelLimit and AccountBalance (you may
have to scroll down). ChargeLimit should have a value of
1000, and AccountBalance should have a value of 458.25.

The value of varSum plus the value of AccountBalance

is greater than the value of ChargeLimit, so the ‘credit
limit exceeded’ message should show if you input account
number 20000. Fortunately, it does.

When you are ready, click OK to dismiss the box that
contains variable values.

In the Debug view, click the Resume button ([Jf=) to
allow the process to continue to the end (or the next
breakpoint, whichever comes first).

Try a few other account humbers in debug mode -- does
the correct message appear?

ceage xminsns= |
czane xminsns= |

age ¥minsns= h
LAOE XIMiinsns !
EAQE X¥IMInNSNns I
< lemporary-sumple-ly|

<mesiage xminsni="h

You can double-click any
variable in debug view to
inspect its contents.

You can redeploy without
debug mode--just choose
File > Deploy to Process
Server...

It is very unlikely that you
will ever want to publish

a completed process in
Debug mode. One reason
is that it adds code to the
process that is usually not
needed for the process to
run as expected.

12

Reference image of the completed process

B Imvcke_PurcrasesDemptenace_GetfurchasesBylcctium

," Imvgdioe LICEAecisDemnplensce Detdcosumbetil

o @H
H Ehie
= Avigrl imitEoe seded = AxtigalineetilotEecseded
4| Repl'Wdthlulgnd

