
CONTENTS

Setting up and importing a
service

Accessing the Schema
Editor's index view

Creating a record element

Setting the output type to
RecordSetType

Changing the input type

Copying inputs

Adding a temporary
variable and a For Each
activity

Extracting records from
the service data

Adding a new record to a
recordset

Deploying and testing

Removing the blank record
from the output

Reference image of the
completed process

This tutorial assumes that you have completed the previous
tutorials and builds upon them.

In Tutorial 5, you created a process that sent a name to an
external service and counted the number of records returned
by that service. What if you had wanted to build a recordset to
store each name returned as a different record? How do you
create a recordset with data returned by a service if you do
not know how many records the set will contain? For example,
in Tutorial 5, you did not know how many names would be
returned. How can you create a recordset with the right number
of records? The answer is, create a variable-length recordset
that can grow to the size required when the process executes.

The CCSDemo service returns several details about each
account found. In this tutorial, you will use a variable-length
recordset to create a process similar to the one created in
Tutorial 5. Instead of counting the number of records, the
process will trim the details received from CCSDemo and return
a list of names, account numbers, and finance types.

Prerequisites:

•	Micro Focus Verastream Process Design Studio

•	An installed and running Micro Focus Verastream Process
Server

•	Internet browser

•	Experience using the XPath and Copy Rule Editors from
previous tutorials

•	Some familiarity with XML Schema, WSDL, XPath, BPEL, and
Web service standards

Let’s get started.

Tutorial 8: Variable-Length Recordsets

2 3

For this tutorial, you will create two new types and one new kind
of element. The most convenient place to create new types and
elements is the index view of the WSDL Editor.

1.	 In the Service Explorer, right-click the project and select
Open WSDL.

2.	 The WSDL Editor opens to its default view, which shows
Input and Output variables. To only see the Output vari-
able, click on the arrow to the right of Output.

3.	 To see the index view of the Schema Editor, click the
index view icon (the small box in the upper-left corner of
the editor).

Accessing the Schema Editor's index view

You can import a service
at any time. Select File
> Import Service to see
the Import Service dialog,
which is dealt with in step
6 on this page.

By default, the process
server’s name is ‘local-
host’. If your server has
a different name, replace
‘localhost’ with the name
of your server.

If you do not see the
server where the Process
Server resides under Micro
Focus/Verastream Process
Designer, click Manage
Servers and follow the
prompts to add the server
to the list.

You start this tutorial by following the same steps as the
setup in Tutorial 5. Create a new project, and then import the
CCSDemo service.

1.	 Start the Process Design Studio (Start > Micro Focus
Verastream > Process Designer > Process Design
Studio).

2.	 From the File menu, select New Project.

3.	 Name the project VariableLengthRecordsets and click
Next.

4.	 On the Import Services dialog, click Add.

5.	 Select Import a registered service and click Next.

6.	 Expand Verastream Process Designer, <server_name>
and Web Services Container, and select CCSDemoService.

7.	 On the Name and Confirm dialog, the Name field is pre-
populated with the name CCSDemoService, click Finish,
and then OK.

8.	 In the BPEL Editor, delete the DoSomethingHere activity
(and the AssignValue it contains) from your project. Save
the project.

Setting up and importing a service

4 5

You will now create a RecordSetType that refers to your new
element 'Record', and set its maximum number of records to
'unbounded.' You can then set the Output to RecordSetType.

1.	 Right-click the Types pane of the index view, and choose
Add Complex Type. A type named NewComplexType is
created. Double-click it to isolate it in the Schema Editor.

2.	 Select NewComplexType. In the Properties view, open
the General tab and change its name to RecordSetType.

3.	 Right-click RecordSetType and select Add Element Ref.

4.	 Select the new element reference. In the Properties view,
open the General tab. In the Reference dropdown, select
Browse..., and then double-click Record.

5.	 In the General tab, set Minimum Occurrence to 0, and
Maximum Occurrence to unbounded.

6.	 Click the index view icon () to return to index view.

7.	 In the Elements pane, select Response, and on the
General tab, from the Type menu, select Browse...

8.	 Type Re to filter, then double-click on RecordSetType.

9.	 Save the project.

Setting the Output type to RecordSetType

The names used in this
tutorial are chosen to indi-
cate the purpose of items
in the tutorial. You may
want to name types and
elements in your project
something more descrip-
tive than RecordType and
Record.

A type defines a data structure. Complex types can include
other types. To do so, you first create an element that defines
an association with a type. In this tutorial, your output will be a
recordset type. To create it, you first define a record type, which
describes the structure of one record in your recordset. Then
you create a record element, then a recordset type with a refer-
ence to the record element.

1.	 Right-click the Types pane of the index view, and choose
Add Complex Type. A type named NewComplexType is
created. Double-click it to isolate it in the Schema Editor.

2.	 Select NewComplexType. In the Properties view, open
the General tab and change its name to RecordType.

3.	 Right-click RecordType and select Add Element. Do this
three times, so the RecordType contains three elements.

4.	 Change the name of the first element to Name, the
second to AcctNumber, and the third to TypeofFinance.
(To change an element name, select it, and then on the
General tab of the Properties view, change the Name field.)

5.	 Click the index view icon () to return to index view.

6.	 Right-click in the Elements pane and select Add Element.
Name the new element Record.

7.	 Select the Record element. In the Properties view, open
the General tab, and from the Type menu choose Browse...

8.	 Type Re to filter the list, then double-click RecordType
and save the project.

Creating a record element

6 7

Creating similar copy
rules is made easier by
the copy button in the

Copy Rules dialog box. To
'clone' a copy rule, select

it in the Properties tab,
click the pencil icon, and

in the Copy Rule dialog
click the copy button. The

'cloned' copy rule opens
with the nodes expanded

to the same location as the
original copy rule. Change
the To and From selection,

then click OK to save the
new copy rule.

You have done the hard part. Now you just need to copy inputs
to inputs and outputs to outputs, as you have in earlier tutorials.

1.	 In the BPEL Editor, place an Assign activity between
ReceiveInput and ReplyWithOutput. Name it AssignInputs.

2.	 On the Service Explorer, expand CCSDemoService, and
drag AccountSearch into the BPEL Editor to invoke the
service. Place it between AssignInputs and ReplyWithOutput.

3.	 Select AssignInputs and create these three rules ():

From: request:InputMessage > payload:Request >
LastName:string

To: CCSDemo_AccountSearch_Input:AccountSearch >
parameters:AccountSearch > LastName:string

**

From: request:InputMessage > payload:Request >
MiddleInitial:string

To: CCSDemo_AccountSearch_Input:AccountSearch >
parameters:AccountSearch > MiddleInitial:string

**

From: request:InputMessage > payload:Request >
StateAbbr:string

To: CCSDemo_AccountSearch_Input:AccountSearch >
parameters:AccountSearch > State:string

4.	 Save the project.

Copying inputs

The process you are using requires a Name, Middle Initial and
State in order to return a list of accounts. You must change your
input type to accept those three parameters.

1.	 Return to the Schema Editor's index view. In the Elements
pane, select Request, and on the General tab, from the
Type menu, select New...

2.	 Name the new type AcctQueryRequestType, then click
OK.

3.	 In the Types pane, double-click AcctQueryRequestType
to isolate it in the Schema editor.

4.	 Right-click AcctQueryRequestType and select Add
Element. Do this three times, so that the RecordType
contains three elements.

5.	 Change the name of the first element to LastName, the
second to MiddleInitial, and the third to StateAbbr. (To
change an element name, select it; open the General tab
of the Properties view and change the Name field.)

6.	 Close the Schema Editor and the WSDL Editor (if it is open).

7.	 Save the project.

Changing the input type

8 9

1.	 Place an Assign activity inside the For Each and name it
AssignAddRecords.

2.	 Select AssignAddRecords and in the Properties view,
open the Details tab and click the copy rule icon ().

3.	 In the From menu, select Expression then click XPath
Expression Editor...

4.	 Expand CCSDemo_AccountSearch_
Output:AccountSearchResponse
then parameters:AccountSearchResponse
then return:accountRecord
then double-click Name:string to create the expression:

$CCSDemo_AccountSearch_Output.parameters/
return[1]/Name

5.	 Replace the 1 inside the brackets with $Counter. Click
OK when the expression looks like this:

$CCSDemo_AccountSearch_Output.parameters/
return[$Counter]/Name

6.	 On the To side of the copy rule, expand
tempRecord:Record and select Name:string. Click Apply.

7.	 To clone the copy rule, select it, and then click the copy
button.

8.	 Replace Name with AcctNumber. Click OK when the expres-
sion looks like this:

$CCSDemo_AccountSearch_Output.parameters/
return[$Counter]/AcctNumber

9.	 On the To side of the copy rule, expand
tempRecord:Record and select AcctNumber:string. Click
Apply.

10.	Clone the first rule again. Replace Name with FinanceType.

11.	On the To side of the copy rule, expand
tempRecord:Record and select TypeofFinance. Click OK.

12.	Save the project.

Extracting records from the service data

The next step is to create a temporary variable to hold individual
records as you extract them from the service data. You will copy
them, one-by-one, out of the service data and into your output
recordset using a For Each activity.

1.	 In the Outline view, right-click Variables and select Add
Variable.

2.	 Name the new variable tempRecord.

3.	 In the Type Selector dialog, type Re to filter the list, then
double-click Record.

4.	 Place a For Each activity between Invoke_CCSDemo_
AccountSearch and ReplyWithOutput.

5.	 In the For Each Properties view, open the Details tab.
Scroll down to Final counter value, and click the pencil
icon () to open the XPath Expression Editor.

6.	 In the Expression field, delete the 1.

7.	 In the Functions tree, expand Node, double-click count.

8.	 With item_sequence highlighted, expand the CCSDemo_
AccountSearch_Output:AccountSearchResponse,
then parameters:AccountSearchResponse,
then double-click return:AccountRecord.
item_sequence is replaced by
$CCSDemo_AccountSearch_Output.parameters/return[1].

9.	 Delete [1], so the whole expression looks like this:

count($CCSDemo_AccountSearch_Output.parameters/
return)

10.	Click OK and save the project.

Adding a temporary variable and a For Each activity

10 11

It’s time to deploy and test your new process. The last page
of this tutorial is a reference graphic showing the completed
process in the BPEL Editor.

1.	 From the File menu, select Deploy to Process Server.

2.	 Enter the name, username and password for the server.
The defaults are:

name: localhost username: admin password: secret

3.	 In the Deployment Succeeded dialog box, click Test
Service to launch the Web Services Explorer.

4.	 Select SOAP11BINDING in the left panel of the Web
Services Explorer.

5.	 You will see three inputs: LastName, MiddleInitial, and
State.

6.	 Enter the following values:

For LastName input Smith
for MiddleInitial input C
for StateAbbr input RI
then press Go

The output will be a list of records comprised of a name,
an account number and a type of finance. There should be
fourteen names -- the same number that the process in
Tutorial 5 counted.

Deploying and testing

The Ode extensions
were implemented by
the Apache Ode team.
They help users accom-
plish tasks that would
be very difficult in BPEL
without them, including
several tasks relating
to recordsets. All of the
Ode extensions available
in the XPath Extension
Editor are supported in
the Verastream Process
Server.

You are ready to create a copy rule that will copy the record
you just stored in tempRecord into the output recordset. To
accomplish this, you will use the Ode XPath extension, ode-
insert-as-last-into. This extension adds a record as the last item
in a recordset. Its context parameter takes a recordset, and its
children parameter takes a record to be added.

1.	 Select AssignAddRecords and in the Properties view,
open the Details tab and click the copy rule icon ().

2.	 In the From menu, select Expression then click XPath
Expression Editor...

3.	 In the Functions tree, expand Ode, and double-click
ode:insert-as-last-into.

4.	 Select the context parameter. In the Variables tree,
expand response:OutputMessage, and double-click
payload:Response:RecordsetType.

5.	 Select the children parameter. In the Variables tree,
double-click tempRecord:Record. Click OK.

6.	 On the To side of the copy rule, expand
response:OutputMessage and select
payload:Response:RecordsetType.

7.	 Click OK.

8.	 Save the project.

Adding a new record to a recordset

12 13

It is considered a best
practice to leave the
'Include optional content'
checkbox marked. Only
uncheck it when you have
a reason to, such as in this
case.

If you followed the steps in this tutorial closely, the first record
returned in the test result should be blank. This is because
when the Output variable was initialized, a record containing
blank data was created and added to the dataset. When the
ode:insert-as-last-into function added records, they were
added to the end of the recordset, after the record containing
blank data.

To remove the blank first record from the results, the Output
variable's initialization rule needs to be revised. The revised
initialization rule will initialize the variable without putting blank
data in its elements. You will accomplish this by turning off the
'Include optional content' checkbox in the second Generate XML
for Variable dialog box.

1.	 In the Outline view, expand Variables, and select Output.

2.	 In the Properties view, Initialization tab, click to create a
new initialization ().

3.	 Clear the Include optional content checkbox. Notice
that the <tns:Record> structure is removed from the
initialization XML. Click OK.

4.	 Save the project.

5.	 Repeat the steps for deploying and testing. The blank
record at the beginning of the results should now be gone.

Congratulations! You have completed the last tutorial. See the
Process Design Studio help for more information about the
topics covered.

Removing the blank record from the output Reference image of the completed process

