
CONTENTS

Setting up

Modifying the input type

Modifying the output type

Initializing the output
variable

Creating and initializing
temporary variables

Summing the input

Averaging the input

Checking your work

Finding the product of all
inputs

Summing every other
input

Assigning output

Deploying and testing

Reference image of the
completed process

This tutorial assumes that you have completed the first through
third tutorials and builds upon them.

In this tutorial you will create and initialize temporary variables,
and use new arithmetic operators. You will also practice several
concepts covered in the previous three tutorials, including
creating complex input and output types, using If and For Each
activities, and using the XPath Expression editor.

You will create a new BPEL project to accept one or more
numbers as inputs. The process will output the sum, average
and product of all numbers input, as well as the sum of every
other number input.

Prerequisites:

•	Micro Focus Verastream Process Design Studio

•	An installed and running Micro Focus Verastream Process
Server

•	Internet browser

•	Some familiarity with XML Schema, WSDL, XPath, BPEL, and
Web service standards

Let’s get started.

Tutorial 4: Temporary Variables, Arithmetic,
and Review

2 3

You can also open the
WSDL Editor through the

Project Explorer. Select
Window > Project

Explorer. Right-click any
item in the Project Explorer

that ends with ‘wsdl’, and
select Open WSDL.

.

In Tutorial 3 you created an input data type that would accept
any number of strings as input. This lesson follows the same
steps with slight variation to create a complex input type and an
input variable that will accept one or more numbers.

1.	 In the Service Explorer, right-click the top node and select
Open WSDL. This opens the WSDL Editor.

2.	 Open the Schema Editor by double-clicking the arrow to
the right of Request.

3.	 Select the Input element, and in the General tab of the
Properties view, change the name to Number, change the
Type to Float, and for Minimum Occurrence select 1, and
in Maximum Occurrence select Unbounded.

Modifying the input type

From the Welcome screen,
choose Start Now to open
the Process Design Studio.

The steps for starting a new project should be familiar by now:

1.	 Start the Process Design Studio (Start > Micro Focus
Verastream > Process Designer > Process Design
Studio).

2.	 From the File menu, click New Project.

3.	 Name the new project Arithmetic, then click OK.

4.	 Delete the DoSomethingHere activity (and the AssignValue
it contains) from your default project.

Setting Up

4 5

Inputs are by default
called Requests and
outputs are called
Responses.

The output type will include several different values (sum,
average, product, etc.).

1.	 Select the Arithmetic.wsdl tab to open the WSDL Editor.

2.	 Open the Schema Editor by double-clicking the arrow to
the right of Response.

3.	 Right-click ResponseType and choose
Add Element. Repeat this until the type has four ele-
ments, including the original Output element.

4.	 To change the default type from ‘string’ to ‘float’ for each
element, double-click the word string and choose float
from the menu.

5.	 Change the names of the four new elements. Select an
element, then in the Properties view, select the General
tab and rename the elements to: Sum, Average,
Product, EveryOtherSum.

6.	 When you are done, close the Schema and WSDL editors
(click the X on the right side of their tabs).

Modifying the output type

The output variable is initialized by default, however if you
modify the structure of the variable, you must reinitialize it
before it can be used. To initialize the variable:

1.	 In the Outline view, expand Variables, and select response.

2.	 In the Properties view, open the Initialization tab. The
response variable looks like this:

3.	 Click Generate XML on the toobar, when the Generate XML
dialog box displays, accept the initialization. The response
variable should now look like this:

Initializing the output variable

Variables are initialized
by defaut, however when-
ever you modify an output

variable, you must re-
initialize it, using this same

procedure.

6 7

You may sometimes want
to create temporary vari-
ables even when you could
do without them. The
thoughtful use of tempo-
rary variables can make
your process easier for
others to understand, and
easier to debug.

You will now create two temporary variables, one for the product
and one for the sum of every other input item. You will build the
final values for these items in steps. The temporary variables
will hold values as they change.

1.	 In the Outline view, right-click Variables and select Add
Variable.

2.	 Name the first variable varProduct, then click OK.

3.	 In the Type Selector dialog, find the Filter Types text
field and type in fl. When you see Float in the Types list,
double-click it.

4.	 Repeat steps 1-3 for a second variable, but name it
varEveryOtherSum.

5.	 In the BPEL Editor, add a new Assign activity between the
ReceiveInput and ReplyWithOutput. Name it AssignInputs.

6.	 In the BPEL Editor, select the AssignInputs activity. In
the Properties view, click to create a copy rule.

7.	 In the From menu, select Fixed Value. In the textbox on
the From side, enter a 1.

8.	 On the To side, select varProduct:float, then click Apply.

9.	 Make a second copy rule. Make it a Fixed Value as
well, but set its value to 0. On the To side, select
varEveryOtherSum:float. Click OK.

Creating and initializing temporary variables

Using the BPEL sum function, you will obtain the sum of all of
the numbers input and create an Assign activity to hold copy
rules for the Sum and the Average.

1.	 In the BPEL Editor, add a new Assign activity between the
AssignInputs activity and ReplyWithOutput.

2.	 In the Properties view, open the Description tab to change
its name to AssignSumAverageOutput.

3.	 Open the Details tab and click to create a copy rule.

4.	 In the From menu, select Expression, then click XPath
Expression Editor....

5.	 In the Functions tree, expand Node, then double-click the
sum function to insert sum(anyAtomicType_sequence)in
the Expression field.

6.	 In the Variables tree, expand the request:InputMessage
until you see Number:float. Double-click Number:float
to replace anyAtomicType_sequence with $request.
payload/tns:Number[1].

7.	 Because Number[1] refers to only the first node in the
node set, and you want to sum up all the nodes, delete
the [1], leaving sum($request.payload/tns:Number).
Click OK, to return to the Create Copy Rule dialog.

8.	 On the To side of the copy rule, expand
Response:OutputMessage, then expand
payload:Response. Select Sum:float and click OK.

Summing the input

8 9

1.	 Select AssignSumAverageOutput, open the Details tab
and click to create a copy rule.

2.	 In the From menu, select Expression, then click XPath
Expression Editor....

3.	 In the Functions tree, expand Node, then double-click the
avg function to insert avg(anyAtomicType_sequence) in
the Expression field.

4.	 In the Variables tree, expand the input variable until
Number:float is visible. Double-click Number:float to
replace node with $request.payload/tns:Number[1].

5.	 Delete the [1].

6.	 On the To side of the copy rule, expand
response:OutputMessage, then expand
payload:Output:ResponseType. Select Average:float and
click OK.

Averaging the input

Often, during the course of
creating a project you will

come to points where it
is easy to deploy and test

the project. You should
plan these points and

take advantage of them
by deploying and testing

your project even though
it may not be complete.

If the project behaves as
expected, you can con-

tinue with confidence. If
the project responds in

an unexpected way, there
are fewer places to look to

correct an error.

Remember to save your
project regularly.

It is good practice to check your work as often as possible. The
earlier you can catch errors, the more smoothly your projects
are likely to progress.

1.	 Save your project, then from the File menu, select Deploy
to Process Server.

2.	 Enter the name, username and password for the server.
The defaults are:

name: localhost username: admin password: secret

3.	 In the Deployment Succeeded dialog box, click Test
Service... to launch the Web Services Explorer.

4.	 You should see one field in which you can enter numbers.
Click the Add link twice, then enter the numbers 2, 4 and
6. Click the Go button.

5.	 The service should return a sum of 12 and an average of
4. If it does, congratulations, time to move on to the next
steps. If it does not, check your work up to this point in
the tutorial.

Checking your work

10 11

To calculate the product of all the numbers input, you will multi-
ply the first two numbers input, save their product, multiply it by
the third number input, save the product, multiply by the fourth
number, save the product, and so on. You will do this using a
For Each activity. The For Each will contain an Assign activity,
calculate the product and assign it to the Response:output.

1.	 Insert a For Each activity between
AssignSumAverageOutput and ReplyWithOutput.

2.	 With the For Each activity selected, in the Properties
view, open the Details tab. Scroll down to Final Counter
Value, and click the pencil icon () to open the XPath
Expression Editor.

3.	 In the Expression field, delete the 1.

4.	 From the Functions tree, expand Node, then double-click
count.

5.	 With item_sequence highlighted, expand the
Request:Input variable until you see Number:float.
Double-click Number:float. Item_sequence is replaced by
$request.payload/tns:Number[1].

6.	 Delete [1], then click OK.

7.	 On the palette, select an Assign activity then click inside
the For Each. Name the assign activity AssignCalcProduct.

8.	 Select AssignCalcProduct, open the Details tab and click
to create a copy rule.

9.	 In the From menu, select Expression, then click XPath
Expression Editor....

10.	In the Variables tree, double-click varProduct:float.

11.	In the Operators tree, expand Arithmetic and double-
click * (multiplication).

Finding the product of all inputs

12.	In the Variables tree, expand request:InputMessage,
and payload:Input, then double-click Number:float. The
Expression field should now contain:
$varProduct * $request.payload/tns:Number[1]

13.	Highlight the 1 (but not the brackets), then, in the
Variables tree, double-click Counter:unsignedInt. The 1
is replaced by $Counter. Click OK.

14.	On the To side of the Create Copy Rule dialog, select
varProduct:float. Then click OK.

The process should now look this this:

12 13

The mod function returns
the remainder of a division
operation as an integer.
For example, 2 mod 2
equals zero, because there
is no remainder; 3 mod 2
returns the remainder of
1; 4 mod 2 equals zero
again, 5 mod 2 equals 1,
and so on.

Rather than double-
clicking on the operators,
you can also just type:
$Counter mod 2 = 0

Selecting operators from
the list may reduce errors.

Counter mod 2 = 0
will return True for items
in even-numbered posi-
tions in the list of inputs,
and False for items in odd-
numbered positions. If you
wanted the reverse, with
items in odd-numbered
positions returning True,
you could use:
$Counter mod 2 = 1

The next step is to find the sum of every other value input. To
do this, you will use an If activity to test whether an item should
be added to the sum. The For Each activity’s Counter variable
tracks the order of items input. You will use it with the mod
(modulus) operation to find every other item.

1.	 Insert an If activity inside the For Each activity and after
AssignCalcProduct.

2.	 With the If activity selected, in the Properties view, open
the Details tab. Click to open the XPath Expression
Editor.

3.	 Delete the default value, true().

4.	 Under Variables, double-click Counter:unsignedInt to
insert the For Each loop’s Counter variable.

5.	 Under Operators, expand Arithmetic and double-click
mod, then type a space and then the number 2.

6.	 Expand Relational and double-click = (equal).

7.	 Type a zero: 0. Click OK.

8.	 In the BPEL Editor, add an Assign activity inside the If
activity. Name it AssignEveryOtherSum.

9.	 Add a copy rule () to AssignEveryOtherSum.

10.	In the From menu, select Expression, then click XPath
Expression Editor....

11.	In the Variables tree, double-click varEveryOtherSum:float.

12.	Type a space, a plus sign (+), and another space.

13.	In the Variables tree, expand request:InputMessage, and
payload:Request, then double-click Number:float. The
Expression field should now contain:
$varEveryOtherSum + $request.payload/tns:Number[1]

Summing every other input

14.	Highlight the 1 (but not the brackets), then, in the
Variables tree, double-click Counter:unsignedInt. The 1
is replaced by $Counter. Click OK.

15.	On the To side of the Create Copy Rule dialog, select
varEveryOtherSum:float. Then click OK.

14 15

Now, assign the product of every input and the sum of every
other input to their respective output variables.

1.	 Add an Assign activity between the For
Each activity and ReplyWithOutput. Name it
AssignProdEveryOtherSumOutput.

2.	 Select it, and then add a copy rule () to it.

3.	 In the From side, select varEveryOtherSum:float.

4.	 On the To side of the copy rule, expand
output:OutputMessage, then payload:Output, and select
EveryOtherSum:float.

5.	 Add another copy rule ().

6.	 In the From side of the copy rule, select varProduct:float.

7.	 On the To side of the copy rule, expand
response:OutputMessage, then payload:Response, and
select Product:float. Click OK.

Assigning output

It’s time to deploy and test your new process. The last page
of this tutorial is a reference graphic showing the completed
process in the BPEL Editor.

1.	 Save your project (File > Save Project).

2.	 From the File menu, select Deploy to Process Server.

3.	 Enter the name, username and password for the server.
The defaults are:

name: localhost username: admin password: secret

4.	 In the Deployment Succeeded dialog box, click Test
Service to launch the Web Services Explorer.

5.	 Click the Add link three times.

6.	 In each of the Values fields, enter one of the following the
numbers: 2, 4, 6 and 8. Enter the numbers in that order.
Click the Go button.

7.	 The service should return these values: Sum = 20,
Average = 5, Product = 384, EveryOtherSum = 12
(because the process is adding 4 and 8).

Deploying and testing

Remember to test against
SOAP11Binding in the left
panel of the Web Services
Explorer.

16

Reference image of the completed process

