
CONTENTS

Opening the WSDL Editor

Using the Schema Editor,
and complex schema types

Changing schema types
from simple to complex

Verifying the type change

Handling no input

Using an If activity

Counting nodes in a node
set

Clearing the output

Using a For Each activity

Looping over each node in
a node set

Creating a concatenate
expression

Assigning the final output

Deploying and testing the
process

Reference image of the
completed process

This tutorial assumes that you have completed the first and
second tutorials and builds upon that knowledge.

In this tutorial, you create a process that accepts an unlimited
number of strings, then puts them all together in a single string
with a space between each. You will test the process by entering
four names. To accept an unlimited number of strings, you will
have to create a complex type for the process input. This tuto-
rial is also an introduction to other activities, such as For Each,
and If, that you will use on a regular basis.

Prerequisites:

•	Micro Focus Verastream Process Design Studio

•	An installed and running Micro Focus Verastream Process
Server

•	Internet browser

•	Experience using the XPath and Copy Rule Editors from
previous tutorials

•	Some familiarity with XML Schema, WSDL, XPath, BPEL, and
Web service standards

Let’s get started.

Tutorial 3: Complex Types, If and ForEach Activities

2 3

The WSDL Editor displays
the input and output

of a process.

Because it works with
two standards that have

slightly different concepts
for the word ‘type’, Process

Design Studio uses the
word in two ways: to refer
to an XML schema concept

and to refer to a BPEL
concept. These tutorials

may sometimes use “BPEL
type,” or a “schema type”

to clarify the relevant
context.

The Schema Editor pro-
vides a graphical repre-

sentation of the underlying
structure, or ‘schema’, of

the XML document.

The Schema Editor has two
tabs underneath the main
window. Click Source to

view the XML source.

The WSDL editor shows the interface to your project--by default,
a WSDL input message and a WSDL output message.

An XML schema describes valid structure and content for an
XML document. It defines elements composed of types of data.
A WSDL includes a selection of simple types, such as string,
int, float, date, and double. A simple type cannot contain sub-
elements or attributes; a complex type can contain either.

You will create a new complex schema type, then add a single
element to it. The element, of type string, will be able to occur
any number of times. You will then set the WSDL input message
to hold an element of your new type.

1.	 Double-click the arrow to the right of Request. This opens
the Schema Editor, where you can change the schema for
your process.

2.	 In the Schema Editor, right-click the Request message
and choose Set Type > New to open the New Type dialog
box.

Using the Schema Editor, and complex schema types

From the Welcome screen,
choose Start Now to open
the Process Designer.

You can also open the
WSDL Editor through the
Project Explorer. Select
Window > Project
Explorer. Right-click on
any item in the Project
Explorer that ends with
‘wsdl’, and select Open
WSDL.

To open the WSDL Editor and start working on this project:

1.	 From the File menu, click New Project.

2.	 Name the new project MultipleInputs, then click OK.

3.	 Delete the DoSomethingHere activity (and the Assign it
contains) from your default project.

4.	 In the Service Explorer, right click on the top node and
select Open WSDL. This opens the WSDL Editor.

Opening the WSDL Editor

4 5

Verifying the type change

You can also view any
problems that may be

developing by clicking the
Problems tab.

See the online Help for
more information on these

options.

To verify that you’ve modified the input variable correctly, in the
Outline view, under Variables, click Request.

The Properties view of the input variable should reflect the new
structure you created.

A type referenced only
once in a schema can be
defined as an anonymous
type. This is more efficient
than naming and referenc-
ing each type.

The Properties view
of the element con-
sists of multiple tabs;
General, Constraints,
Documentation,
Extensions, and Advanced.

1.	 On the New Type dialog box, select Complex Type.

2.	 Check Create as local anonymous type, then click OK.

3.	 The schema editor now shows the new input type. Right-
click on the InputType and select Add Element from the
context menu. This adds a new element to the XML file.

4.	 With NewElement selected, in the Properties view, open
the General tab and change the name to Names.

5.	 Set the type to string.

6.	 Set the minimum occurrence to 0.

7.	 Set the maximum occurrence to Unbounded (so the input
can accept an unlimited number of strings).

8.	 Save and close both the Schema and WSDL Editors.

Changing schema types from simple to complex

6 7

A basic If activity evalu-
ates one condition, but
<Else If> and <Else>

statements can be added
to evaluate more than one.

See the online Help or the
WS-BPEL specification
(http://docs.oasis-

open.org/wsbpel/
2.0/OS/

wsbpel-v2.0
-OS.html)

for more information.

You only need to process the list of names if it contains at least
one name. To check whether it contains a name, use an If activ-
ity. An If activity tests whether a condition is true or false.

1.	 Drag the IF activity from the Palette and drop it after the
AssignInput control in the process flow diagram.

2.	 In the Properties view for the If activity, click the ‘pencil’ (
) icon to open the XPath Expression Editor.

Using an If activity

In the second tutorial you
learned to use a BPEL
Assign activity for simple
data manipulation using
XPath expressions. The
Assign activity is used to
assign values to variables.

What if there aren’t any names passed into the process? In
that case, the process can show a default message. Use an
Assign activity to assign the default message to the Output
variable.

1.	 Drag an Assign activity from the Palette and drop it
on the process flow diagram between the Receive and
Reply controls.

2.	 In the Properties view, open the Description tab and
name the Assign AssignInput.

3.	 In the Properties view, open the Details tab, then click
the green plus sign () to create a copy rule that will
initialize the output variable.

4.	 In the From menu, select Fixed Value.

5.	 Type No names were input! as the default message.

6.	 In the To menu, with Variable selected, expand
Response:OutputMessage and payload:Response,and
then select Output:string. Click OK.

Handling no input

8 9

If names have been input, you do not want to show the default
Response message. In this step, you clear the default message
in the Response variable by assigning it an empty string. (The
concatenate expression you create for the Response later must
start with an empty Response variable.)

1.	 Drag an Assign activity within the IF control.

2.	 In the Properties View, click the Description tab and
replace the default name with ClearOutput.

3.	 In the Properties View, click the Details tab, then click the
 symbol to create a copy rule.

4.	 Create a copy rule that assigns an empty string to the
output variable, then click OK.

Clearing the output

Node sets can be thought
of as arrays. An array is a
list of things, each identi-
fied with an unique key.
By default, array keys
are numbers, so the first
element in the list may be
identified with a ‘1’, the
second with a ‘2’, and so
on.

To refer to a single
element in an array, you
write the name of the
array, followed by a key in
square brackets: []. For
example, listOfNames[1],
refers to the first element
in the array listOfNames.
Sometimes the first key is
‘0’ rather than ‘1’; if that’s
the case, then
listOfNames[1] refers
to the second element
(because listOfNames[0]
refers to the first).

The list of names will be passed as a node set. Node sets are
lists, and nodes are items in the list. XPath includes many
functions that work with node sets and nodes. For example, the
count() function counts the nodes in a node set. Your If activity
will count the nodes in the list of names. If the count is greater
than zero, the list has at least one name.

In the XPath Expression Editor:

1.	 In the Expression field, delete the default, true().

2.	 From the Functions tree, expand Node, then double-click
the count function to insert Count(item_sequence) (with
item_sequence highlighted) in the Expression field.

3.	 In the Variables tree, expand the input variable until the
Names element is visible. Double-click Names:string
to replace item_sequence with $input.payload/
tns:Names[1], a reference to the first node in the list of
names.

4.	 To count all nodes in the list of names, delete the refer-
ence to the first node, [1], leaving: $request.payload/
tns:Names.

5.	 Add ‘greater than zero’ to the expression by typing >0.

6.	 Click OK to close the XPath Expression Editor.

Counting nodes in a node set

10 11

Now that the For Each activity is in place, you need to set its
counter so it will loop over each node in the list of names.

By default, the counter variable in the For Each is named
‘Counter’, it starts at 1, and its final value is 1. You need to
change the final counter value. You want it to start at 1, and
loop once for each name input, so the final counter value will
equal the number of names input.

You will replace the final value with an expression that counts
the number of names input. This is the same expression you
created earlier, as part of the If activity.

1.	 Select the For Each activity; the For Each counter is visible
in the Details tab of the Properties view.

2.	 Under Final counter value, click the pencil icon () to
open the XPath Expression Editor.

3.	 Delete the default, 1.

4.	 From the Functions tree, expand Node, then double-click
the count function to insert Count(item_sequence) (with
item_sequence highlighted) in the Expression field.

5.	 In the Variables tree, expand the input variable until the
Names element is visible. Double-click Names:string
to replace item_sequence with $request.payload/
tns:Names[1], a reference to the first node in the list of
names.

6.	 To count all nodes in the list of names, delete the refer-
ence to the first node, [1], leaving: $request.payload/
tns:Names, then click OK.

Looping over each node in a node setUsing a For Each activity

The small white box inside
the For Each activity is its
‘scope’. You can put other
activities in the scope that
you want to run as part of
the For Each loop.

The If activity also has
a scope. (In fact, in this
example, the For Each
activity is inside an If
activity’s scope.)

The goal of this exercise is to put all of the names input into a
single string in the Output, starting with the first name, then
adding the second, the third, and so on. That’s just the kind of
work a For Each activity is designed to do.

A For Each activity repeats a sequence (loops) as many times
as you tell it to. Every For Each activity includes a counter. Each
time it loops, the counter’s value increases by one.

For this exercise, you will start the counter at one. The For Each
will stop when the counter equals the number of names input.
A For Each is a convenient way to do something that uses each
node in a node set.

•	Drag a For Each activity from the palette and drop it inside
the If activity.

12 13

Assigning the final output

You have completed the concatenate expression. Now you
just need to assign its results to the Output variable. The For
Each activity is inside the If activity, so it will only create a list
of names if names have been input. That list of names then
becomes your output. If no names have been input, the process
outputs the default message you created earlier.

1.	 In the To side of the Copy Rule, expand
response:OutputMessage, and payload:Response, and
then select Output:string.

2.	 Click OK.

3.	 Select File > Save Project.

Sometimes the icon
scrolls offscreen. If you
do not see it, make sure
you are on the Details tab,
then look for scroll bars
and try to scroll until you
see it again.

The XPath concat function
takes a variable number of
inputs and concatenates
them in the order in which
they are listed.

The final step before testing is to use an Assign control to create
the concatenated string. Every time the For Each loop executes,
a name will be added to the string.

The expression will select names in the node set sequentially by
using the Counter variable you just created. Remember, to refer
to the first item in a node set you use notation like: Names[1],
where the 1 is a key. If you replace the 1 with the Counter
variable, then each time the value of the Counter variable incre-
ments, the next item in the node set is selected.

1.	 From the palette, drag an Assign activity into the For Each.

2.	 On the Description tab of the Properties view, name the
Assign activity BuildOutput.

3.	 With the Details tab selected, click the on the
Properties view toolbar to open the Create Copy Rule
dialog box.

4.	 In the From menu, select Expression.

5.	 Click XPath Expression Editor....

6.	 From the Functions tree, expand the String node and
double-click concat.

7.	 With anyAtomicType_Arg1 highlighted, from the Variables
tree, expand response:OutputMessage, and payload:
response, and then double-click Output:string.

8.	 With anyAtomicType_Arg2 highlighted, expand
request:InputMessage, and payload:Request, then
double-click on Names:string. The second parameter
should now be: $request.payload/tns:Names[1].

9.	 Highlight the 1 (but not the brackets around it) then,
under Variables, double-click on Counter:unsignedInt.
The 1 is replaced by $Counter.

10.	Replace anyAtomicType_OptionalArgs with quote-space-
quote (“ “).

11.	When the expression looks like the example below, click OK.

Creating a concatenate expression

14 15

To test what occurs when a number of different names are input
into the process:

1.	 Click Add and enter a name in the field. Repeat this as
many times as you want. In this example four names have
been added.

2.	 Click Go to test the process. The output should show all of
the names you entered, separated by spaces.

Congratulations! You’ve completed tutorial three. Take a break,
then come back for tutorial four.

You learned how to deploy a BPEL project to a process server in
the first Hello World tutorial. A brief recap:

1.	 From the File menu, select Deploy to Process Server.

2.	 Enter the name, username and password for the server.
The defaults are:

name: localhost username: admin password: secret

3.	 In the Deployment Succeeded dialog box, click Test
Service to launch the Web Services Explorer.

4.	 Select the SOAP11Binding option to test against.

5.	 Click Go to test the response of the service when no

names are entered. In the Status view you should see ‘No
names were input!’

Deploying and testing the process

16

Reference image of the completed process

